Tìm GTNN của hàm số y= sinx + sin(x-pi/3)

Tìm GTNN của hàm số y= sinx + sin(x-pi/3)

Share

1 Answer

  1. Đáp án:

    GTNN$y=-\sqrt3$ 

    $\Leftrightarrow   x=-\dfrac{\pi}3+k2\pi$ $(k\in\mathbb Z)$

    Giải thích các bước giải:

    Ta có: $y=\sin x+\sin\left({x-\dfrac{\pi}3}\right)$

    $\Leftrightarrow y=\sin x+\dfrac12\sin x-\dfrac{\sqrt3}2\cos x$

    $\Leftrightarrow \dfrac y{\sqrt3}=\dfrac{\sqrt3}2\sin x-\dfrac12\cos x$

    $\Leftrightarrow \dfrac y{\sqrt3}=\sin\left({x-\dfrac{\pi}6}\right)\ge-1$

    $\Rightarrow y\ge-\sqrt3$, GTNN$y=-\sqrt3\Leftrightarrow \sin\left({x-\dfrac{\pi}6}\right)=-1$ 

    $\Leftrightarrow x-\dfrac{\pi}6=-\dfrac{\pi}2+k2\pi\Leftrightarrow x=-\dfrac{\pi}3+k2\pi$ $(k\in\mathbb Z)$.

    • -7
Leave an answer

Leave an answer

Browse