Giải giùm tôi bài này vs: Cho hình lăng trụ ABCD A’B’C’D’ . BIẾT ABCD LÀ HCN CÓ AB=2AD =2a. HÌNH CHIẾU VUÔNG GÓC CỦA A LÊN A’B’C’D’ LÀ TRUNG ĐIỂM CỦA

Giải giùm tôi bài này vs:
Cho hình lăng trụ ABCD A’B’C’D’ . BIẾT ABCD LÀ HCN CÓ AB=2AD =2a. HÌNH CHIẾU VUÔNG GÓC CỦA A LÊN A’B’C’D’ LÀ TRUNG ĐIỂM CỦA A’B’ . GÓC GIỮA AA’ VÀ ĐÁY A’B’C’D’ BẰNG 60 ĐỘ . TÍNH THỂ TÍCH ABCD.A’B’C’D’

Share

1 Answer

  1. Gọi $H$ là trung điểm của $A’B’$ suy ra $AH\bot(A’B’C’D’)$

    $AH’=\dfrac{A’B’}{2}=a$

    Áp dụng hệ thứ lượng vào tam giác vuông $\Delta AA’H$ ta có:

    $\tan\widehat{AA’H}=\dfrac{AH}{A’H}$

    $\Rightarrow AH=A’H\tan \widehat{AA’H}=a\tan 60^o=a\sqrt3$

    $\Rightarrow V_{ABCD.A’B’C’D’}=AH.S_{A’B’C’D’}=a\sqrt3.2a.a=2a^3\sqrt3$.

    • 0
Leave an answer

Leave an answer

Browse