Cho chóp SABCD có đáy hình thoi cạnh a, góc BAC 60°, mặt bên SAB là tam giác cân tại S và nằm trong mp vuông góc với mặt đáy. Mp SCD tạo với mặt đáy g

Cho chóp SABCD có đáy hình thoi cạnh a, góc BAC 60°, mặt bên SAB là tam giác cân tại S và nằm trong mp vuông góc với mặt đáy. Mp SCD tạo với mặt đáy góc 30°. Khoảng cách giữa hai đường SB và AD là

Share

1 Answer

  1. Gọi H là trung điểm của $AB\Rightarrow SH\bot(ABCD)$

    $\Delta ABC$ cân có $\widehat{BAC}=60^o\Rightarrow \Delta ABC$ và $\Delta ACD$ là tam giác đều cạnh a

    Gọi $I$ là trung điểm cạnh $CD\Rightarrow AI\bot CD$

    Tứ giác $AICH$ là hình bình hành $\Rightarrow AI\parallel HC$

    $\Rightarrow HC\bot CD$ (1) mà $CD\bot SH\Rightarrow CD\bot(SHC)$

    $\Rightarrow CD\bot SC$ (2)

    Từ (1) và (2) suy ra $(SCD),(ABCD)=(SC,HC)=\widehat{SCH}=30^o$

    Do $AD\parallel BC\Rightarrow AD\parallel (SBC)$

    $\Rightarrow d(AD,SB)=d(AD,(SBC))=d(A,(SBC))=2d(H,(SBC))$

    Từ H kể $HK\bot BC$ tại K $\Rightarrow BC\bot HK$, BC$\bot SH\Rightarrow BC\bot (SHK)$

    $\Delta SHK$ dựng $HP\bot SK$

    $BC\bot HP$

    $\Rightarrow HP\bot(SBC)$

    $\Rightarrow d(H,(SBC))=HP$

    Ta có: $CH=\dfrac{a\sqrt3}{2}$, $\widehat{SCH}=30^o$ áp dụng hệ thức lượng vào $\Delta $ vuông $SHC$ ta có: $SH=HC\tan\widehat{SCH}=\dfrac{a}{2}$

    $\dfrac{1}{HK^2}=\dfrac{1}{BH^2}+\dfrac{1}{HC^2}=\dfrac{4}{a^2}+\dfrac{4}{3a^2}=\dfrac{16}{3a^2}\Rightarrow HK=\dfrac{a\sqrt3}{4}$

    $\Delta $ vuông SHK:

    $\dfrac{1}{HP^2}=\dfrac{1}{SH^2}+\dfrac{1}{HK^2}=\dfrac{4}{a^2}+\dfrac
    {16}{3a^2}=\dfrac{28}{3a^2}\Rightarrow HP=\dfrac{a\sqrt 3}{2\sqrt7}$

    $\Rightarrow d(SB,AD)=\dfrac{a\sqrt3}{2\sqrt7}$.

    • 0
Leave an answer

Leave an answer

Browse